A tool for the interpretation of NMR spectra

Roland Stenutz

Department of Organic Chemistry, Stockholm University SE-106 91 Stockholm, Sweden

roland@organ.su.se

Polysaccharide structure:

Components "type"

relative configuration

absolute configuration

ringsize

Hex or HexNAc

Glc or Man

D- or L-

p or f

Linkages position

stereochemistry

 \rightarrow 4) or \rightarrow 6)

 α - or β -

Sequence

$$\rightarrow$$
4)Glc(\rightarrow 4)Gal(\rightarrow or

$$\rightarrow$$
4)Gal(\rightarrow 4)Glc(\rightarrow

NMR can be used to perform all of the steps in a structure determination

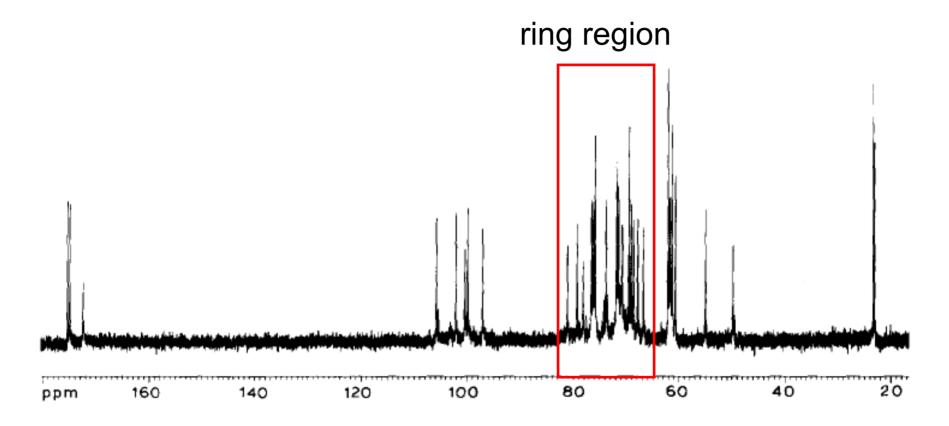
- except the determination of the absolute configuration

The interpretation of NMR spectra becomes difficult if the polysaccharide -

- is irregular (or a mixture)
- contains many similar residues
- is very large

Typical ¹H spectrum

O-antigen of E. coli O113



Computer Assisted SPectrum Evaluation of Regular polysaccharides

Typical ¹³C spectrum

O-antigen of E. coli O113

Computer Assisted SPectrum Evaluation of Regular polysaccharides

Polysaccharides have unique 1D-spectra - all of the information about the structure is contained in a 1D-spectrum.

Most of the NMR-experiments are performed to assign the resonances and do not provide additional information about the structure.

Methods for the interpretation of 1D-spectra can save much time and effort!

Current approaches:

comparison with a database (SugaBase)
simple and accurate but limited to known
structures or sub-structures.

comparison with simulated NMR spectra (CASPER) requires information about the components and linkages to limit the number of possible structures.

Artificial Neural Networks (ANN)

current application are limited to a single class of compounds.

(http://www.casper.organ.su.se/casper)

22 4 4 5 6 C		CASPER			8
Home	Research	Analysis	ECDB	CASPER	Ke3690
Welcome	Help	Simulate	Determine Sequence		
Title Dextran Source J. Am. Cher	m. Soc. 96 (1974) 8081-8087				
Residue	Linkage position 1 2 3 4 5 6		Chemical shifts © ¹³ C C 99.0 72.5 74.5 71.3 70		
none 🔽					
none 🔻					
none 🔻	000000		Correct by subtracting 0	ppm	
h diningung pungh on	of coupling constants of diff.	aront magnituda	Number of shifts - Require	d: 6 Actual: 6	Clear text area
	of coupling constants of differmall medium (<2 Hz) 0 (2-7 Hz)	ereni magnitude large 0 (>7 Hz)	5		
¹ _{ЈСН} [0		0 (>169 Hz)	i		
S	ave form As MIME 🗹		Start si	mulation	

Computer Assisted SPectrum Evaluation of Regular polysaccharides

Residue	Li	nka	ge	ро	sitio	on
	1	2	3	4	5	6
D-Glcp ▼	▮☑					V
none						
none						

Data from methylation analysis is used to limit the number of structures generated.

Results of calculation

Please cite as: Computer-assisted structural analysis of oligo- and polysaccharides: An extension of CASPER to multibranched structures. R. Stenutz, P.-E. Jansson and G. Widmalm; Carbohydr. Res.306(1998) 11-17; PubMed 9691437.

URL: http://www.casper.organ.su.se/casper.html

- 1. O ->6)aDGlc(1->, error=0.65ppm (0.11)
- 2. C ->6)bDGlc(1-> , error=15.81ppm (2.64)

Simulated structures ranked by fit

Simulated structure

->6)aDGlcⁱ(1->

->6)aDGlcⁱ(1-> 98.90 72.39 74.32 70.66 71.28 66.90 4.97 3.59 3.74 3.54 3.90 3.98 3.77

Assignment of ¹³C resonances

Experimental	Simulated	Exp-Sim	Assignment
99.00	98.90	0.10	aDGlc ⁱ - 1
74.50	74.32	0.18	aDGlc ⁱ - 3
72.50	72.39	0.11	aDGlc ⁱ - 2
71.30	71.28	0.02	aDGlc ⁱ - 5
70.70	70.66	0.04	aDGlc ⁱ - 4
66.70	66.90	-0.20	aDGlc ⁱ - 6

Error=0.65 ppm (0.11/shift), Systematic error=0.04 ppm, RMS error=0.13 ppm

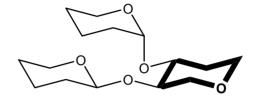
Experimental structure

->6)aDGlcⁱ(1->

->6)aDGlcⁱ(1-> 99.00 72.50 74.50 70.70 71.30 66.70 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

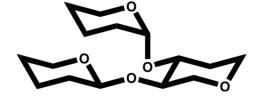
JCAMP-format

Assignment	Exp-Sim	Simulated	Experimental
aDGlc ⁱ - 1	0.10	98.90	99.00
aDGlc ⁱ - 3	0.18	74.32	74.50
aDGlc ⁱ - 2	0.11	72.39	72.50
aDGlc ⁱ - 5	0.02	71.28	71.30
aDGlc ⁱ - 4	0.04	70.66	70.70
aDGlc ⁱ - 6	-0.20	66.90	66.70

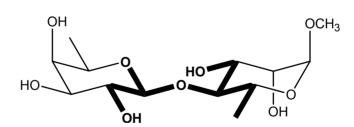

Simulation of NMR

Title	dextran			
Source				
	Residue	Linkage '	Reducing' end	
1) a 🔽	D-Glcp ▼	(->6)	self ▼	
2) a 🔻	none	(->2) ▼	residue 1 💌	
3) a 🔻	none	(-> 2) ▼	residue 1 🔽	
4) a 🔻	none	(-> 2) ▼	residue 1 💌	
5) a 🔻	none	(->2) ▼	residue 1 💌	
6) a 💌	none	(->2) ▼	residue 1 💌	
7) a 💌	none	(->2) ▼	residue 1 💌	
¹³ C-Che	mical shifts			¹ H-Chemical shifts
99.0 72	.5 74.5 71.3 70	.7 66.7		
Correct b	oy subtracting 0	ppm		Correct by subtracting 0 ppm
CLEA	R Search Sweet	DB Search	ECDB	CLEAR Search SweetDB Search ECDB
	Save form]As MIME □		Start simulation

Chemical shift calculation


1) Start with monosaccharide

2) Add glycosylation shifts


3) Add steric corrections

Glycosylation shifts

$$\beta DGlc(1 \rightarrow 6.45 -1.07 -0.18 -0.20 0.12 -0.19 \rightarrow 4) \alpha DGlcOMe -0.27 -0.25 -1.51 9.20 -1.36 -0.60$$

$$\beta$$
DFuc(1 \rightarrow 6.85 -1.05 -0.13 -0.24 0.18 -0.23 \rightarrow 4) αDRhaOMe -0.30 -0.66 -1.23 10.19 -1.35 -0.07

Line notation

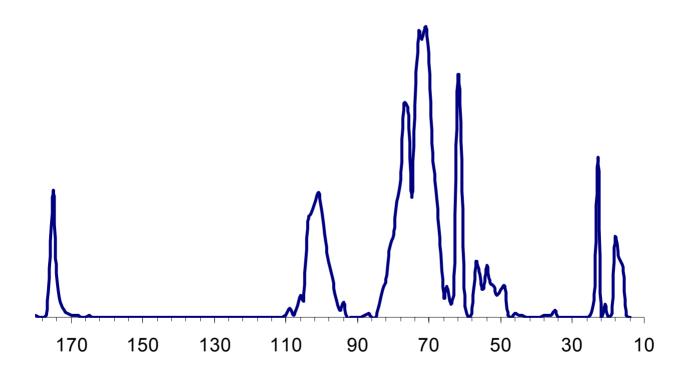
Lewis A

bDGal(-3)[aLFuc(-4)]bDGlcNAc

Dextran

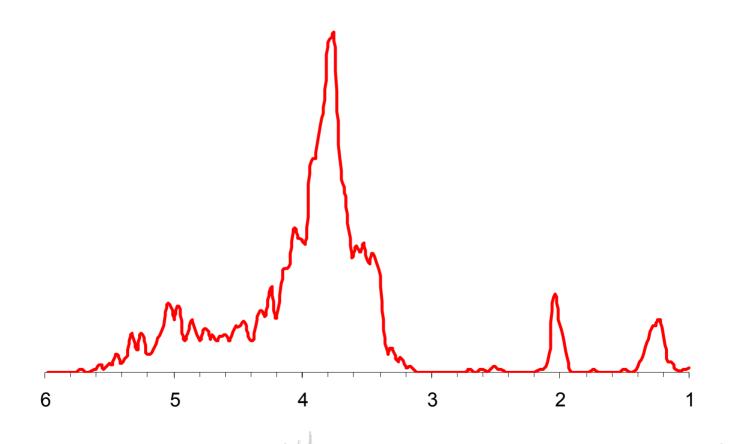
-6)aDGlc(-

http://www.casper.organ.su.se/casper/cgi-bin/ln.cgi?structure

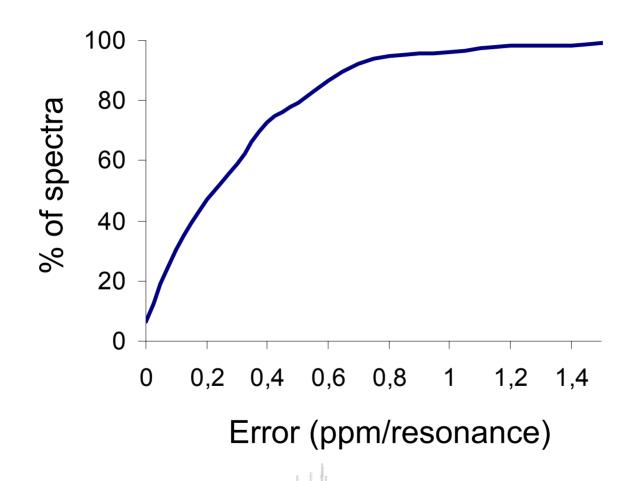


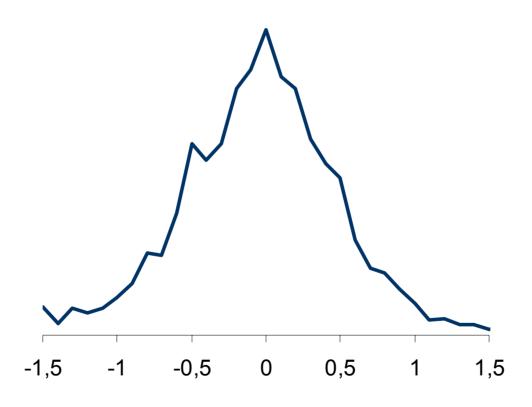
E. coli O-antigens

Serogroup	O6			
Serotype	O6:K54:H10			
Strain	A12b (see <u>CCUG 11311</u>)			
ECDB#	50			
Structure	->4) aDGalNAc (1->3) bDMan (1->4) bDMan (1->3) aDGlcNAc (1-> bDGlcNAc (1->2)			
CarbBank	<u>34570</u>			
LinucsID	9686			
Structure code	P4.1			
Sugar components	2 DMan, 2 DGIcNAc, DGalNAc			
Non-sugar components				
Comments	Structure [1]			
Identical to				
Cross-reacts with	Escherichia coli O6:K2:H1, O6:K13:H1 [1]			
¹ H-NMR	4.81 4.01 3.84 3.75 3.57 3.87 3.73 4.92 4.14 4.01 3.69 4.18 3.84 3.78 5.24 4.29 4.09 4.09 4.31 3.77 3.77 4.73 4.39 3.77 3.67 3.46 3.97 3.63 4.78 3.73 3.59 3.47 3.39 3.89 3.75			



Sum of ¹³C-spectra


Sum of ¹H-spectra


Computer Assisted SPectrum Evaluation of Regular polysaccharides

Prediction of published ¹³C-NMR

Distribution of errors

